Official Arduino Day 2017

Official Arduino Day 2017

Arduino day will be taking place on 1 April 2017, many haven’t even heard of it, so what is all the fuzz about.

What is Arduino Day?

Arduino Day is a worldwide birthday celebration of Arduino. It’s a 24 hour-long event – organized directly by the community, or by the Arduino founders – where people interested in Arduino get together, share their experiences, and learn more. whether you are newbies, makerspaces, hackerspaces, fablabs, associations, teachers, professionals, or any other user group Arduino day is for all who are fascinated by Arduino.

What will Arduino Day offer?

You can attend an event or organize one for your community. It doesn’t matter whether you are a Maker, an engineer, a designer, a developer or an educator: Arduino Day is open to anyone who wants to celebrate Arduino and all the amazing things that have been done (or can be done!) with the open-source platform. The events will offer different types of activities, tailored to local audiences all over the world.

Some projects from previous Arduino Days

What will we be doing for Arduino Day?

On Arduino Day we will be hosting an Arduino Beginner to Intermediate Training course for ages 10 and up! Have you subscribed to our newsletter? We will have an Arduino Day sale and will send details in our newsletter.

What you will learn on the training:

  • The internal working of Arduino.
  • Some key elements to programming.
  • Electronics around your program.
  • Four projects will be built excluding the bonus project.
  • Time will be given to chat to trainers in person.
  • trainers will be available if there is any confusion during the projects.

What you will need:

  • 5 LED’s
  • 5 resistors between 150E and 1k
  • 10k Potentiometer
  • Jumper cables
  • Arduino
  • Laptop

For those that do not have the components needed, we do have two options for you.

  1. When filling out the Registration form, select the number of small training kits.
  2. You could get our Monster Kit, also by selecting it on the registration form.

Please return filled out registration forms to

Simple Arduino esp8266 web server ESP-07 ESP-12

Simple Arduino esp8266 web server ESP-07 ESP-12

Arduino esp8266 web server

To be able to host your own simple web server is easy all you need is the ESP8266 Serial WIFI Module and FTDI232 downloader here is a short description of both and a link on where to find it, An Arduino is not required at all and the ESP8266 board can be a stand alone board and it can be programmed with an FTDIboard. This blog is called Arduino esp8266 web server because you can also connect the wifi module to an Arduino if you want.

The ESP8266-03 is a highly integrated chip designed for the needs of a new connected world. It offers a complete and self-contained Wi-Fi networking solution, allowing it to either host the application or to offload all Wi-Fi networking functions from another application processor.

The USB to TTL serial adapter is based on the high quality and very popular FTDI FT232RL chipset and is an excellent way to connect TTL serial devices to a PC through a USB port and to program your Arduino esp8266 web server.

Unlike most USB to TTL serial adapters, this adapter supports both 5V AND 3.3V operation! Simply set the jumper as required to choose between 5V and 3.3V as labelled on the board.

Part List
  • ESP-07/ESP-12
  • FTDI232
  • Jumper Wires
  • 10k Resistor
  • Pushbutton
  • Breadboard
  • Stripboard
  • 2x 8 pin headers male or female
STEP1: Easy Access

Grab your headers, ESP module and strip board. Cut the Stripboard down to size (8 columns 9 rows), if you are unsure of the size you could cut it afterwards, remember to break the tracks at the bottom. Next solder thin wire to the pads of the ESP module and put each wire in its own column and solder it to the stripboard, next solder in the headers.

This part is very important because the pitch of the module’s pads are 2mm and that of the breadboard are 2.54mm.



STEP2: Wiring

Now we will look at the wiring of the module, something to keep in mind is that the module runs on 3.3V. The above mentioned Downloader(FTDI232) supports both 3.3V and 5V, switch the jumper to 3.3V if your downloader does not support 3.3v, you will have to add a voltage divider as shown below, below that is the wiring of the module.




STEP3: Setup

First things first, if you haven’t got the ESP8266 library yet see “Getting Started with NodeMCU with ESP8266 part 1” on how to install the library, next we have to select the type of board and programmer.

First select the Board Tools -> Board -> Generic ESP8266 Module


Next select the programmer Tools -> Programmer -> USBasp


Now you can connect your programmer and select the port. We’re using an example sketch for this tutorial. File -> Examples -> ESP8266WebServer -> Hello Server. Remember to add your SSID and password.


STEP4: Uploading

Now that the wiring is done and your Arduino IDE is set up, we can start the upload process.Uploading to the ESP module could become tricky if you don’t keep track so pay close attention.

Firstly  connect GPIO 0 to ground.


If the ESP module is powered up already, press the reset button you installed on the breadboard (pushbutton), if not just power up the module via the USB cable to the downloader. This process boots the  module up in program mode. You can now upload you sketch to the module. Once upload is complete, disconnect GPIO 0 from ground and reset it again, this allows the module to operate as normal. and your upload is complete.


STEP5: Connecting To The Server

When you are done uploading and you have removed the wire from GPIO 0 you can open your “Serial Monitor”. It should display the connection status after it has connected to your WIFI-router it will display an IP-address, copy this IP and enter it into your browser’s search bar. It will display the words “Hello From ESP8266” in your browser window.

Arduino Simulator App Review

Arduino Simulator App Review

Arduino Simulator Review – Start Developing Without a Real Arduino Board

We had stumbled across this Arduino simulator, in which you can use both electronics and you Arduino skills to be able to test your circuit before buying the necessary component or just to prevent you having a fried Arduino.

This Arduino simulator is free and works really great, although it has one major downside, the sketches have to be saved in .hex files then imported into the simulator but other than that it’s a really great app to have. Once you get the hang of creating the hex files it is actually not too bad and it becomes quite effortless.



Below is a simple explanation on how to use the Simulide Arduino simulator.

First, you will have to download and extract the entire archive to your desired folder. If you run the executable from within the archive some functions will not be available. After extraction process has completed you can run the executable (.exe).

Next, build your circuit, remember to adjust the resistor values, on the left click on Properties and double click on the resistance value.



After you have built your circuit you can compile your sketch into a HEX file. In your Arduino IDE make sure your sketch is saved then go to Sketch->Export compiled Binary, or press Ctrl->Alt->S.

Now it’s time to load your sketch into the simulator, Right-click on the Arduino and select “Load firmware” and load your HEX flie you just exported, there will be two HEX files “xx.ino.standard.hex” and “xx.ino.with_bootloader.standard.hex” you have to select the one without the bootloader.

You are all set now and you can click on the power button at the top.

Another great Feature

The probe is another great feature the app has. Put the probe on up to four of your output pins and right click on it and select add to plotter.

Please note that this might look like an oscilloscope but it is a logic analyzer and will not work with PWM signals, for PWM signals select “Add to Oscope” instead of “Add to plotter”

How to create a PCB From a Diagram

How to create a PCB From a Diagram

How to create a pcb

Converting a circuit diagram to a Printed Circuit Board (PCB) could prove to be a challenging task.

But luckily with technology today it is fairly simple to complete this task, so there’s no need to be stressed out. We will be doing an easy one for today. It is called an A-Stable Multi Vibrator.

First, I will explain the circuit and the working thereof. Imagine that R2 were absent from the circuit, and suppose Q1 started out being turned on. Then Q2 would have nothing to turn it on, and Q1 would be held on by current through R3, while the R4 and the LED would charge C2. The effect would be that LED1 would come on and stay on, while LED2 would never light.

Now add R2. This will cause C1 to charge to -0.7 volts, until Q2 turns on. Once that happens, the charge on C2 would cause the base of Q1 to go negative, turning it off. When that happens, current flowing through LED1  will start flowing through C1 and the base of Q2, turning it on even harder. Once Q2 has turned on, it will keep Q1 off until C2 charges to -0.7 volts.

Note that while the circuit would have a stable state with both transistors on and both capacitors reverse-biased by 0.7 volts, in practice the winky-blink circuit always starts oscillating rather than entering such a state.


We will now start with our process. First download your software HERE for Design Spark or HERE for EAGLE CAD, I use Design Spark most of the time.


STEP1: Layout
,,,hFirst we’re going to place all of the components in the correct place.


It can be a bit difficult to find the components, but design spark has a great function under view -> Model Source Bar where you could either look under categories or enter a RS Components stock ,number just select your country and search your components you need, enter the stock number and click use component the software will tell you in which library it save the component and you can go fetch it from there. Marked in red are the two ways to find the components you need.



STEP2: Connecting
Next we will connect the components together as shown in the image above, note that instead of a battery I have have added a two pole header, when we have the final product we will have two holes where you can solder in the battery leads or you can put headers in those same holes.


STEP3.1: Converting
From here you have a few options. First option is to simply click on translate to PCB.


and follow the easy steps. Your PCB will look something like this


This does not always come out like expected, in which case we will see how to fix this in Step 3.2

STEP3.2: Converting
If your results was not what you expected in Step 3.1, click on Tools -> Unroute Nets -> All Nets.


You will see that the tracks has disappeared and now there are thin yellow lines. These yellow lines are to show you how the components were connected.

If you chose not to follow the previous option you will have to insert the components manually again. If you did follow the previous option you now only move the components how you feel fit.

This is what mine looks like yours can be different.


STEP4: Wiring Compnents
For option 1 go to Tools -> Auto Route Nets -> All Nets


and follow the instructions.

For option 2 you have to add the track in manually as in the schematic.

Your end result may look different than mine, but in the end, we achieve the same product.


Note: Using option two may result in errors making the PCB useless. Yes option one may have errors as well but only if your schematic was wrong. Some of these errors may prove to be fatal.

I hope this blog post gave you a starting point on how to create a pcb.

Control with the Arduino bluetooth module

Control with the Arduino bluetooth module

We found this incredible tutorial on how to use the HM-10 BLE Arduino Bluetooth module by Hammad Tariq

connections_hn10_arduinoIn this tutorial, you will learn about controlling a LED using HM-10 BLE Arduino bluetooth module, Arduino and Evothings Studio.

Last Summer, I wrote a tutorial about controlling the lights of your home using Arduino and HC-05 bluetooth module. While, HC-05, HC-06 and HC-09 are still famous and available everywhere, they are essentially based on Bluetooth 2.0 technology. On the other hand, many new smartphones support only BLE (Bluetooth Low Energy or Bluetooth 4.0) instead of Bluetooth 2.0 or Bluetooth 1.0. The iPhone is most prominent of those smartphones as it’s supporting BLE since iPhone 4S, which was released nearly 5 years ago!

As I sat down to explore what options we have for prototyping a BLE enabled IoT device, the HM-10 came up as a prominent module in this space as it’s inexpensive and available everywhere. The module is also based on already familiar TI’s CC2541 BLE SoC. The module also has a few clones; one is called BT-05, another is called AT09, yet another is known as the SPP-CA HC-05/HC-06 or BT06, yet some clones are based on ZS-040 breakout boards just like HC-05.

There is an excellent post by Martyn Currey if you want to identify the module you have or want to explore the differences between them. Essentially, if your module is based on CC2541, that is BLE and you should be able to use this tutorial with the exception of UUID of the module, that I will explain later in the tutorial. Also, HM-10 and all other clones use AT commands for configuration, you can read the datasheets for reference but this tutorial or mobile app does not need you to use any AT command.

In addition to the HM-10 and Arduino, I will be using Evothings Studio to develop our mobile app. Evothings Studio is ideal for developing IoT mobile apps as it’s easy to use, gets you started in minutes even if you have “some” knowledge of JavaScript and HTML. Also, it has useful pre-built libraries and plugins, such as, for this example, the Evothings Studio already has necessary libraries to work with BLE, all you need is to write down a few lines of code to connect and send commands to your BLE module.

Step1: What you will need.




1 x HM-10 or anyother similar Arduino bluetooth module
1 x Arduino Uno
1 x LED
1 x 220 ohm resistor


Step 2: Connect the circuit



Connect the Arduino and Bluetooth module pins as shown below.

  1. Connect 3.3V of Arduino to the VCC of HM-10
  2. Connect GND of Arduino to the GND of HM-10
  3. Connect D8 of Arduino to RX of HM-10
  4. Connect D7 of Arduino to TX of HM-10
  5. Connect D2 of Arduino to the long leg of LED along with a 220 ohm resistor
  6. Connect the short leg of LED with the GND of Arduino


HM-10 and Arduino Wiring Diagram





Step 3: Upload the Arduino Sketch



Go to my Github repository and download/copy-paste the Arduino sketch to your Arduino IDE. Upload the sketch to your Arduino.

Step 4: Download the Evothings Studio

You can skip to next step if you already have Evothings Studio and are familiar with it’s working.

Follow these steps:

  1. Download and install Evothings Workbench on your computer. Generate an anonymous Cloud Key further down on the download page, paste it into the Workbench software.
  2. Download Evothings Viewer app from an appstore (iOS, Android)
  3. Open Evothings Workbench and click on “Get Key” button
  4. Open Evothings Viewer app, provide your connection key and tap the “connect” button
  5. Once the connection is successful, go to “Examples” tab and click the “Run” button for the “Hello World” example

You should see the “Hello World” app loaded into the Evothings Viewer; that is how the whole development suite works together, whatever changes you will make in your app code, the Evothings Workbench will reload it in the Evothings Viewer, allowing you to preview your changes in real time!

Step 5: Developing the Mobile App

On Evothings Workbench, click “Run” for “BLE Scan” example and note down the name of your BLE module.

Clone or download this Github repository on your computer. Open “hm10-arduino-ble” example, go to “app folder”, drag & drop the “index.html” to “My Apps” tab of Evothings Workbench.

Now open “index.html” in your favourite code editor, check “app.connect” function to confirm if your module has the same name as written in the code, else change it with your module’s name.

Now click the “Run” for your new project entry in “My Apps” tab, the app should load in Evothings Viewer, press the “Connect” button. Once connected, use the buttons to switch your LED On/Off.

Tip: If you experience any difficulty in connecting with your module, first identify which module do you have and then search for it’s UUID (universal unique identifier) online. Correct UUID should be given in the app.ledOn and app.ledOff functions of index.html.

Code Explanation

As explained earlier, the Evothings Studio comes bundled with all necessary libraries to connect and get you started with BLE. Our example is making use of arduinoble and easyble libraries which are located in app/libs/evothings directory. See this tutorial on more details about them. As, for now, we don’t need to go in detail of how these libraries are working, we can just focus on the code in the “index.html” file.

Following block of code is used to connect to the BLE module:

app.connect = function()
'BT05', // Name of the module.
app.device = device;
app.showMessage('Connected! Touch buttons to turn LED on/off.');
app.showMessage('Connect error: '   errorCode   '.');

In this block of code, we are providing the name of the module to the library function of evothings.arduinoble.connect, upon success, we show a success message.

Similarly, analyze following block of code:

// Turn on LED.
app.ledOn = function()
app.device && app.device.writeDataArray(new Uint8Array([1]), '0000ffe1-0000-1000-8000-00805f9b34fb');
// Turn off LED.
app.ledOff = function()
app.device && app.device.writeDataArray(new Uint8Array([0]), '0000ffe1-0000-1000-8000-00805f9b34fb');

In this block of code, we are calling library function app.device.writeDataArray to write 0 and 1 to the BLE module along with the UUID of HM-10 module.

In the Arduino sketch, analyze the following block of code:

void loop() {
int c;
if (mySerial.available()) {
c =;
Serial.println("Got input:");
if (c != 0)
// Non-zero input means "turn on LED".
Serial.println("  on");
digitalWrite(LED_PIN, HIGH);
// Input value zero means "turn off LED".
Serial.println("  off");
digitalWrite(LED_PIN, LOW);

In this block of code, we are reading the software serial of Arduino. We simply switch the LED on if we receive anything other than 0 on the software serial, similarly, if it’s 0, we turn the LED off.

You can also check the serial monitor of Arduino IDE to see what you are receiving on Arduino’s software serial.